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Abstract

Recent developments in LLMs offer new op-
portunities for assisting authors in improving
their work. In this paper, we envision a use
case where authors can receive LLM-generated
reviews that uncover weak points in the cur-
rent draft. While initial methods for automated
review generation already exist, these meth-
ods tend to produce reviews that lack detail,
and they do not cover the range of opinions
that human reviewers produce. To address
this shortcoming, we propose an efficient two-
stage review generation framework called RE-
VIEWER2. Unlike prior work, this approach
explicitly models the distribution of possible
aspects that the review may address. We show
that this leads to more detailed reviews that
better cover the range of aspects that human
reviewers identify in the draft. As part of the re-
search, we generate a large-scale review dataset
of 27k papers and 99k reviews that we annotate
with aspect prompts, which we make available
as a resource for future research.

1 Introduction

Asking fellow group members to critique a draft is
widely regarded as a valuable way of improving sci-
entific writing, and the lack of access to such peers
outside of well-resourced research groups is a key
source of inequality (Merton, 1968; Nielsen and
Andersen, 2021; Kozlowski et al., 2022). Further-
more, even in well-resourced groups, the frequency
with which authors can receive feedback is limited.
In this paper, we thus develop techniques for gener-
ating automated feedback via LLMs to aid authors
in enhancing the quality of their work before it en-
ters the formal peer review. This helps level the
playing field, and it promises to reduce pressure
on the peer review process (Lee et al., 2012) after
experiencing exponential increases in submissions
(Björk and Solomon, 2013; Bornmann and Mutz,
2014; Kelly et al., 2014).

The ability of LLMs to reason about complex
tasks gives them the potential to provide automated
feedback on papers (Liu and Shah, 2023; Liang
et al., 2023). A key asset is that we already have
substantial amounts of supervised data from peer
reviews (Kang et al., 2018a; Yuan et al., 2021; Shen
et al., 2022; Dycke et al., 2023), containing paper-
review pairs across different years, venues, and
subjects. Prior approaches to review generation
(Yuan et al., 2021; Lin et al., 2023) focus on fine-
tuning a pre-trained language model based on these
datasets. However, unlike typical instruction fol-
lowing tasks (Ouyang et al., 2022; Touvron et al.,
2023), we argue that open-ended review generation
is under-specified in a way that makes it difficult
to align language models for instruction follow-
ing. In particular, asking an LLM to generate a
review without specifying which aspects of the pa-
per to focus on exposes the model to substantial
uncertainty. This leads to shortcomings along the
following dimensions:

Specificity. Peer reviews exhibit varying levels
of specificity from general (e.g., "the paper is tech-
nically sound.") to precise (e.g., "the paper has a
good theoretical basis based on the derivation in
section 3."). A good review should provide de-
tailed justifications for its assessment, especially
when stating the weaknesses of the paper (Yuan
et al., 2021). In addition, justifications make the
review more constructive as they provide direct in-
structions on how to improve the paper (Xiong and
Litman, 2011). However, our experiments reveal
that standard fine-tuning diminishes the specificity
of the generated reviews. An example is shown
in Table 1 where we generate reviews based on a
model that is fine-tuned over increasing numbers of
training steps. The generated review is significantly
more generic at step 2000 compared to the one at
step 500.

Coverage and Control. Different human re-
viewers are likely to focus on different aspects of
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Training Step 500 Training Step 1000 Training Step 2000
The paper proposes a simple and
efficient differentiable data genera-
tion pipeline.

The authors have done extensive
experiments to validate the effec-
tiveness of the proposed method.

The paper is well-written and
straightforward. The method is
technically sound.

Table 1: Generated reviews from different steps using a generic prompt (1 epoch ≈ 1000 steps).

a paper. An automated review-generation system
should thus cover the range of issues that human
reviewers may identify. We find that standard fine-
tuning of LLMs for review generation often leads
to a form of regression-to-the-mean, where the gen-
erated reviews do not cover the full range of aspects.
We argue that an ideal system should actively con-
trol coverage, and give authors the ability to ask for
feedback on specific aspects.

To address these issues, we propose an efficient
two-stage review generation framework for papers
called REVIEWER2. REVIEWER2 includes two
fine-tuned language models. The first LLM ana-
lyzes the paper and produces a set of aspects that
the reviews should focus on. Each of these aspects
takes the form of a prompt that is the input for the
second stage. The second LLM generates a review
based on the paper and the aspect prompt. We im-
plement REVIEWER2 based on LongLoRA (Chen
et al., 2023) and FlashAttention-2 (Dao, 2023) to
enable 32k context length, avoiding the use of ex-
tractive summaries of the paper that was necessary
in prior work due to limitations in context length
(Gehrmann et al., 2018; Chen and Bansal, 2018;
Dou et al., 2021; Yuan et al., 2021; Lin et al., 2023).

Unfortunately, existing peer-review datasets do
not include aspect prompts, providing insufficient
data for training either stage of REVIEWER2. To
address this issue, we develop a prompt generation
with evaluation (PGE) pipeline to generate a vari-
ety of high-quality aspect prompts. PGE generates
prompts given the review and uses a self-evaluation
step to ensure the quality of the generated prompts.
Based on PGE, we construct a large-scale review
dataset of 27k papers and 99k reviews from six dif-
ferent venues with corresponding aspect prompts.

Extensive experiments on multiple venues
demonstrate that our REVIEWER2 framework
trained on PGE-generated aspect prompts substan-
tially outperforms existing methods in terms of re-
view quality, specificity, and coverage. The major
contributions of this paper are summarized below:
• We propose REVIEWER2, a novel framework for

joint aspect prompt and review generation that
improves coverage and enables control.

• We implement REVIEWER2 based on LongLoRA

and FlashAttention-2, enabling 32k context
length with low memory requirement for fine-
tuning and inference.

• We design two new metrics for evaluating speci-
ficity and coverability. We compare REVIEWER2
with various baseline methods and find that it sub-
stantially improves review generation.

• We propose PGE, a novel pipeline for augment-
ing existing review datasets with aspect prompts,
and we construct the first large-scale peer review
dataset that includes aspect prompts.

2 Related Work

Instruction generation and tuning. Previous
works have demonstrated the efficacy of instruction
fine-tuning in enhancing both task performance and
adaptability to unseen tasks (Wei et al., 2022; Sanh
et al., 2022; Ouyang et al., 2022). However, these
approaches depend heavily on human-written in-
struction data, which is often constrained in terms
of quantity and diversity. Several works have ex-
plored using large language models (LLMs) to au-
tomatically generate instructions. Honovich et al.
(2022) prompts a language model with seed ex-
amples of instructions to generate additional in-
structions, inputs, and outputs. Wang et al. (2023)
adopts a similar approach while filtering the gener-
ated instructions to ensure diversity and quality.

Self-alignment. Self-alignment of LLMs is an
emerging area of research that utilizes the model
to improve itself and align with human values with
minimal human supervision. This field primarily
consists of two approaches: unsupervised data gen-
eration and post-hoc output refinement. In Li et al.
(2023), prompts and responses are generated ac-
cording to a small set of human-written principles,
while Sun et al. (2023) focuses on generating syn-
thetic prompts derived from human-written docu-
ments. On the other hand, Madaan et al. (2023)
employs an iterative process to refine its output
through generated feedback.

Automation in peer review. Automated sys-
tems have played a significant role in various as-
pects of the review process. Numerous algorithms
(Stelmakh et al., 2019; Kobren et al., 2019; Cohan
et al., 2020) have been developed to evaluate the ex-



Figure 1: Illustrations of REVIEWER2. a) REVIEWER2
fine-tunes two models: Mp generates aspect prompts
based on paper, and Mr generates reviews based on the
paper and a prompt. b) REVIEWER2 utilizes a two-stage
inference to generate an aspect prompt and generate the
review based on the generated prompt.

pertise of potential reviewers, optimizing reviewer-
paper assignments. In addition, several algorithms
have been proposed to ensure the submissions ad-
here to appropriate guidelines, such as plagiarism
detection (Foltýnek et al., 2019) and desk rejection
prediction (Ghosal et al., 2019). Recently, efforts
have been directed towards the development of al-
gorithms for review generation (Yuan et al., 2021;
Lin et al., 2023), leveraging papers as input and
fine-tuning on LLMs for review generation.

3 REVIEWER2 for Review Generation

In this section, we introduce our REVIEWER2
pipeline for generating reviews. The key idea is to
insert explicit control into the pipeline to ensure
that the generated reviews cover the full range of
aspects that human reviewers may comment on.
We demonstrate that this improves both coverage
and specificity of the generated reviews.

Figure 1(a) illustrates how we train the two
stages of REVIEWER2. For the first stage, we fine-

tune an LLM

Mp : p → {x1, ..., xk}

to produce a set of aspect prompts x1, ...xk for
paper p that cover the aspects that a reviewer may
comment on for this paper. For the second stage of
REVIEWER2, we fine-tune another LLM

Mr : (p, x) → y

to produce a review y for paper p that addresses
aspect x. When generating a review for a new
paper p′, we first query Mp for an aspect prompt
x. We then query Mr to produce a review y for
the generated aspect prompt. This inference pro-
cess is depicted in Figure 1(b). We will provide
evidence that this two-stage pipeline not only pro-
vides explicit control of aspect coverage, it also
avoids a type of regression-to-the-mean (Barnett
et al., 2004) that makes single-stage pipelines pro-
duce generic reviews with little specificity.

An illustrative example is shown in Figure 2
which contains three reviews, {y1i , y2i , y3i }, for pa-
per pi. All three reviews comment on either or both
theoretical and empirical justifications, represent-
ing the general aspects. However, the reviews pro-
vide different suggestions for improvement, which
are considered as specific parts. We find that a
single-stage pipeline that is trained without aspect
prompts tends to only generate the general com-
ponents of the review, as illustrated in Figure 2(b),
since such "mean reviews" align closely with all
three reviews. On the other hand, by adding as-
pect prompts {x1i , x2i , x3i } derived from the paper,
the augmentation diversifies the aspects that are
addressed, aligning it more effectively with the
variability seen in the human reviews. Note that the
prompt space now better captures the variability
between reviewers, which reduces the noise when
mapping to generated reviews. This reduction in
noise enables the generation of more specific re-
views, ŷi, during inference as shown in Figure 2(c).

To enable efficient long context fine-tuning and
inference, we adapt LoRA+ and S2-Attn from
Chen et al. (2023).

LoRA+. LoRA (Hu et al., 2021) achieves
efficiency by updating only the low-rank matri-
ces. Specifically, for a pre-trained weight matrix
W ∈ Rd×k, LoRA utilizes a low-rank decomposi-
tion W = W +BA, where B ∈ Rd×r, A ∈ Rr×k,
and r ≪ min(d, k). During training, W remains
fixed, while A and B are updated. In the context



Figure 2: Illustrations of the effect of aspect prompts. a) General content is highlighted in blue, while specific
content is highlighted in red. b) Fine-tuning without aspect prompts causes the generated contents to be general
during inference. c) Fine-tuning with aspect prompts allows specific content generation during inference.

Figure 3: PGE includes two steps: generation and eval-
uation. The prompt is regenerated if the score is below
5 on a 5-point scale, otherwise, it is saved to S.

of Transformers, LoRA selectively adapts atten-
tion weights Wq,Wk,Wv,Wo while keeping all
other parameters frozen. LoRA+ extends on top
of LoRA by also making the embedding and nor-
malization layers trainable.

S2-Attn. To address the quadratic complexity of
self-attention, S2-Attn presents a solution by group-
ing input tokens. For instance, with an input length
of 32,768 and group size 4, it divides the input into
four groups, each of length 8,192, limiting self-
attention to tokens within the same group. To allow
information flow across different groups, S2-Attn
shifts the group partition by half group size in half
attention heads. In this way, the first group in the
first half of the attention head is from 1st to 8192th

token while the first group in the second half of
the head is from 4096th to 12288th token. S2-Attn
could also be used with FlashAttention-2, allowing
accelerated computations.

4 Review Dataset with Aspect Prompts

Training REVIEWER2 requires a dataset of papers
and reviews that is augmented with aspect prompts.
While there is ample data on papers and their as-
sociated reviews, these datasets contain generic re-
view prompts that do not capture which aspects the
human reviewer chose to focus on. We therefore
developed the following methodology for augment-
ing existing review datasets with aspect prompts.

The result is the first review dataset that is an-
notated with aspect prompts, and we make this
dataset available as a new resource. It consists
of up-to-date crawls of publicly available reviews
from NeurIPS and ICLR , and we also augment the
datasets from PeerRead (Kang et al., 2018b) and
NLPeer (Dycke et al., 2023).

4.1 PGE: Prompt Generation with Evaluation

In order to generate the corresponding prompt for
each review, we propose Prompt Generation with
Evaluation (PGE) pipeline consisting of a gen-
eration step and an evaluation step, as shown in
Figure 3. Specifically, given a set of m papers
P = {p1, p2, ..., pm} and corresponding reference
reviews Y = {yni |1 ≤ i ≤ m, 1 ≤ n ≤ ni}
where ni is the number of reviews for paper i, the
goal of the pipeline is to generate a set of prompts
X = {xni |1 ≤ i ≤ m, 1 ≤ n ≤ ni} that one
prompt corresponds to one review.

For a review yni , the generation step generates
a prompt, xni , and the evaluation step evaluates
the generated prompt based on a 5-point scale.
If xni achieves a score of 5, the pair (xni , y

n
i ) is

stored in the set S, S = S ∪ {(xni , yni )}, otherwise
the prompt is regenerated. This two-step iterative
approach resolves the problem of the absence of
ground-truth prompts for reviews and ensures the
quality of prompt generation without human super-



Table 2: Dataset Statistics

CONLL-16 ACL-17 COLING-20 ARR-22 ICLR-17-23 NeurIPS-16-22 total
# papers 22 137 89 476 16,327 10,754 27,805

# words per paper 4,325 4,679 4,230 4,850 6,959 5,236 6,229
# reviews 39 275 112 684 58,933 39,684 99,727

# words per review 418 440 414 397 512 482 487
# prompts 37 270 108 676 58,107 38,762 97,960

# words per prompt 56 60 45 46 52 51 53
% accepted 50% 67% 93% 100% 32% 98% 55%

domain NLP/CL NLP/CL NLP/CL NLP/CL ML ML multi

Table 3: Dataset Comparison

# papers # reviews prompts
PeerRead

3,006∗ 10,770 ✗
(Kang et al., 2018b)

ASAP-Review
8,877 28,119 ✗

(Yuan et al., 2021)
MReD

7,894 30,764 ✗
(Shen et al., 2022)

NLPeer
5,672 11,515 ✗

(Dycke et al., 2023)
Ours 27,805 99,727 ✓

*Number of papers that have reviews.

vision. The prompts we used for generation and
evaluation are shown in Appendix A.

Prompt Generation. We initialize S with
human-annotated examples that will be used as
initial in-context examples during generation. To
construct these examples, we use Llama-2-70B-
Chat (Touvron et al., 2023) to generate prompts
for a randomly selected subset of 100 reviews in
a zero-shot fashion. Then, we manually refine the
prompts by removing irrelevant questions, adding
missing questions that are covered in the review,
and refining to align with the open-ended format of
review questions. An example of a review-prompt
pair is shown in Appendix B.

To enhance the performance of prompt gener-
ation, we apply in-context learning (ICL) (Dong
et al., 2023) in the process. The in-context ex-
amples are randomly sampled from S. As more
prompts are generated and saved to S, the pool
of available examples also expands, ensuring the
diversity of the prompts. We always sample the
maximum possible number of in-context examples
while satisfying the context length constraint.

Prompt Evaluation. Similar to generation, we
also apply ICL during the evaluation step. We use
Llama-2-70B-Chat to evaluate the review-prompt
pair based on a 5-point scale with five in-context ex-
amples for each score from 1 to 5. The in-context
examples (shown in Appendix C) are manually
constructed and remain consistent across all evalua-

tions. Inspired by chain-of-thought prompting (Wei
et al., 2023), we prompt the LLM to generate an
explanation for the score before producing the final
score to encourage more accurate assessments.

Regeneration. To ensure the quality of the gen-
erated prompt, the pipeline regenerates the prompt
if the score is not 5. Since the in-context examples
for generation are randomly sampled rather than
a fixed set, the regeneration step is guaranteed to
generate a different prompt compared to the previ-
ous generations, minimizing redundancy. We use a
limit of 5 generations per review, and the review is
excluded from further generation if it exceeds the
limit. More than 90% of the reviews take less than
or equal to 3 generations to reach a score of 5.

4.2 Dataset Details

We incorporate parts of the PeerRead and NLPeer
datasets. CONLL-16 and ACL-17 from Peer-
Read contain papers and reviews from the NLP
domain. The reviewing process is double-blind
and the formats of the review are unstructured.
NLPeer’s COLING-20 and ARR-22 are collected
via a donation-based workflow in NLP domain with
formats in free-form reports and standardized struc-
tured review forms.

In addition to the prior datasets, we crawl ICLR
papers from 2017 to 2023 through OpenReview1

and NeurIPS papers from 2016 to 2020 through
NeurIPS Proceedings2 and from 2021 to 2022
through OpenReview. The resulting datasets are
ICLR-17-23 and NeurIPS-16-22. For each pa-
per’s review, we follow the format of the previous
datasets to keep as much metadata information as
possible including reference and meta reviews from
official reviewers, and final decisions.

Unification. The diverse sources of datasets
are converted into a unified format to enhance ac-
cessibility and consistency. For each paper, we

1https://openreview.net/
2http://papers.neurips.cc/

https://openreview.net/
http://papers.neurips.cc/


include the full text of the paper, metadata, and cor-
responding reviews and prompts. For the contents
of the paper, we use Science Parse3 from AllenAI
to parse the PDFs of the papers into construct struc-
tured JSON files. Each paper is accompanied by
detailed metadata, providing essential information
about the paper. The detailed sections of paper and
metadata are shown in Appendix E. The reviews
contain both textual components and scores that are
divided into different sections based on the venue-
specific formats. In addition, we employ our PGE
pipeline to construct a prompt for each review. For
simplicity, we only use the text part of the review
for prompt generation and review generation.

Analysis. The statistics of our dataset are shown
in Table 2. Our dataset consists of more than 27k
papers and 99k reviews in various domains. The
average paper length spans from 4k to 7k, demon-
strating substantial variability. The review length
and prompt length exhibit smaller variances, aver-
aging from 400 to 500 and 45 to 60 respectively.
Compared to other review datasets (Table 3), our
dataset has the largest number of papers and re-
views and is the only dataset that includes aspect
prompts.

Licensing and Personal Data All datasets are
distributed under an open Creative Commons li-
cense and are compiled with explicit consent or
sourced from materials with an open license. We
attribute authors of the papers in our dataset while
excluding personal metadata and reviewer identi-
fiers.

5 Experiments

In the following section, we evaluate review qual-
ity, review specificity, and aspect coverage as key
properties of the generated reviews. We provide
extensive ablation experiments that identify how
much each novel contribution of our approach con-
tributes to improved performance. In particular, we
compare REVIEWER2 against the following base-
lines:
• REVIEWER2-E: Following (Yuan et al., 2021),

we apply a cross-entropy (CE) extraction method
to extract a diverse set of sentences from the pa-
per to represent the content of the paper. The
framework is the same as REVIEWER2 while we
only use the extracted part instead of the full pa-
per: ME

p : e → {x1, ..., xk}, ME
r : (e, x) → y

where e is the extracted content from paper p.
3https://github.com/allenai/science-parse

Table 4: Results of the model variations using three
metrics across six venues (SS-E0: SINGLES-E0, SS-
E: SINGLES-E, SS: SINGLES, R2-E: REVIEWER2-E,
R2: REVIEWER2). The best-performing model for each
venue and metric is highlighted in bold.

Method BLEU ROUGE (max) BertScore
(max) R-1 R-2 R-L (max)

In
-d

om
ai

n IC
L

R

SS-E0 8.15 29.93 7.14 13.76 68.45
SS-E 12.53 39.63 10.19 19.76 79.40
R2-E 13.32 40.06 10.59 20.34 80.11
SS 15.08 40.77 11.78 21.09 81.18
R2 16.94 44.58 13.56 22.62 83.61

N
eu

rI
PS

SS-E0 8.29 28.96 6.98 13.63 67.82
SS-E 11.72 39.54 9.75 19.67 79.17
R2-E 12.91 39.87 10.02 19.81 80.17
SS 14.44 40.62 11.22 20.8 81.83
R2 16.24 42.15 13.11 22.52 83.23

C
ro

ss
-d

om
ai

n

A
C

L

SS-E0 5.02 30.77 6.28 12.69 68.90
SS-E 4.67 35.23 7.07 16.53 78.15
R2-E 4.82 36.44 7.98 16.73 80.03
SS 5.40 35.73 7.94 16.94 80.25
R2 6.49 36.88 8.04 17.77 83.65

A
R

R

SS-E0 6.01 32.48 7.89 13.91 69.34
SS-E 6.89 38.30 9.67 18.67 79.09
R2-E 6.96 39.17 10.94 19.53 80.69
SS 6.73 38.93 11.22 19.61 81.03
R2 7.46 40.18 12.04 20.76 82.29

C
O

L
IN

G

SS-E0 3.66 30.51 6.49 12.83 69.19
SS-E 2.65 35.31 6.92 16.5 77.92
R2-E 3.01 35.09 7.34 17.74 78.15
SS 3.34 34.57 8.11 17.14 80.21
R2 4.37 37.13 9.18 18.91 83.35

C
O

N
L

L

SS-E0 5.18 32.01 6.32 12.75 69.45
SS-E 3.41 35.16 6.89 16.18 78.39
R2-E 3.59 34.28 6.74 16.82 80.15
SS 5.09 33.85 6.88 16.52 79.83
R2 6.07 35.38 7.40 18.22 83.13

This ablation is used to evaluate the difference
between using the full paper compared to an ex-
tractive summary.

• SINGLES: We fine-tune a single-stage model to
directly generate reviews from the full context of
the paper without an aspect prompt, MS

r : p →
y. Prompts are neither used in fine-tuning nor
inference. This ablation is designed to evaluate
the effect of aspect prompts.

• SINGLES-E: This variant involves fine-tuning a
single model to generate reviews only from ex-
tractive summaries of papers, MSE

r : e → y.
This method aligns with commonly employed
pipelines in previous papers and serves as a base-
line representing the state-of-the-art.

• SINGLES-E0: This zero-shot approach prompt
an LLM to generate a review from the extracted
context directly without aspect prompts. This
baseline evaluates the effect of fine-tuning.

We use Llama-2-70B-Chat (Touvron et al., 2023)
as the instruction-following model for PGE and

https://github.com/allenai/science-parse


Figure 4: Specificity plots of four methods for 2000 steps across six venues.

Llama-2-7B-Chat for REVIEWER2 and the single
stage baselines. The hyperparameter details are
shown in Appendix F. We randomly select 80%
of ICLR and NeurIPS papers for training, 10% for
validation, and 10% for testing while using all the
papers in other venues for testing. Since the other
venues have review formats different from ICLR
and NeurIPS, this allows us to test adaptability to
different review formats.

5.1 Quality Analysis
To compare the generated reviews with the refer-
ence reviews, we employ three metrics: BLEU (Pa-
pineni et al., 2002), ROUGE (Lin and Hovy,
2003), and BertScore (Zhang et al., 2020). BLEU
and ROUGE measure the n-gram similarity while
BertScore measures the semantic similarity in the
embedding space. Notably, there are several ref-
erence reviews for each paper. When computing
BLEU, ROUGE, and BertScore, we use the maxi-
mum value instead of an average since the gener-
ated reviews do not need to be closely aligned with
all references, given that the reference reviews may
focus on different aspects.

Result. Table 4 compares the performance of
REVIEWER2 against several ablations and base-
lines. Overall, REVIEWER2 outperforms all meth-
ods across all metrics and datasets, demonstrat-
ing the effectiveness of leveraging both the full
context of the paper and the aspect prompt. The
comparisons between REVIEWER2 and SINGLES
as well as REVIEWER2-E and SINGLES-E re-
veal consistent performance improvement through
the two-stage approach. Furthermore, the com-
parison between REVIEWER2 and REVIEWER2-
E shows that avoiding extractive summaries pro-

vides an additive benefit on top of using aspect
prompts. On the cross-domain datasets (ACL,
ARR, COLING, CONLL) we can observe a com-
parable BertScore with ICLR and NeurlPS using
REVIEWER2, demonstrating the semantic adapt-
ability of the method to domains that the methods
was not trained on.

To further illustrate REVIEWER2, we included
aspect prompts produced by Mp and a review pro-
duced by Mr in Appendix D.

5.2 Specificity Analysis
A highly specific review identifies specific issues of
the given paper, and it does not look like a generic
review that could apply to other papers. To for-
malize this into a concise metric, we measure the
specificity of the review by calculating the drop
in BertScore when pairing the review with the ref-
erence reviews of a different paper. A generated
review with high specificity will lead to a large av-
erage drop, while a generic review will lead to a
smaller drop. Formally, given papers P , reviews Y ,
and generated reviews Ŷ = {ŷ1, ŷ2, ..., ŷm}, we
define specificity (SPE ↑) as:

SPE =
1

m

m∑
i=1

max{sim(ŷi, y
n
i )|1 ≤ n ≤ ni}

− 1

m−1

∑
j ̸=i

max{sim(ŷi, y
n
j )|1 ≤ n ≤ ni}

where sim(a, b) denotes the BertScore between a
and b and ŷj . We approximate the inner sum by
Monte Carlo sampling j ∼ [1,m] \ i.

Result. To obtain a reliable measure, we con-
ducted ten random shuffles and calculated the av-
erage. The result is shown in Figure 4 along with



Table 5: Effect of prompts for SINGLES (SS) and RE-
VIEWER2 (R2) across six venues.

av
g

SS
1

m

m∑
i=1

1

ni

ni∑
n=1

sim(MS
r (pi), y

n
i )

R2
1

m

m∑
i=1

1

n2
i

ni∑
n=1

ni∑
k=1

sim(Mr(pi, x
n
i ), y

k
i )

m
ax

SS
1

m

m∑
i=1

max{sim(MS
r (pi), y

n
i )|

1 ≤ n ≤ ni}

R2
1

m

m∑
i=1

1

ni

ni∑
n=1

max{sim(Mr(pi, x
n
i ), y

k
i )|

1 ≤ k ≤ ni}
Method ICLR NeurIPS ACL ARR COLING CONLL

av
g SS 80.19 80.23 79.85 80.23 79.42 78.41

R2 80.13 80.36 79.14 79.96 79.53 78.28

m
ax SS 81.18 81.83 80.25 81.03 80.21 79.83

R2 83.63 83.41 83.54 82.51 83.19 83.32

the variance. For methods that do not make use
of aspect prompts, SINGLES and SINGLES-E, the
specificity drops with more training steps. This
indicates that increased training without prompts
leads to more generic reviews. For the methods
that use prompts, REVIEWER2-E and REVIEWER2,
the specificity consistently increases with a higher
number of steps. Notably, the difference between
REVIEWER2 and SINGLES is higher than the dif-
ference between REVIEWER2-E and SINGLES-E,
suggesting that adding prompts on top of the full
context leads to higher improvement comparing to
adding to the extracted context.

5.3 Control Analysis

To assess how responsive REVIEWER2 is to the
aspect prompts, we conduct experiments that com-
pare REVIEWER2 and SINGLES. The Mr model
in REVIEWER2 is given the prompts generated by
PGE. We compute the average similarity of the
generated review to the reference reviews for both
methods as well as the maximum similarity. The
detailed equations for the computations are shown
in Table 5. BertScore is used for computing sim.

Result. REVIEWER2 and SINGLES have sim-
ilar average similarity while REVIEWER2 has a
higher maximum similarity across all six venues.
This means that SINGLES generates reviews that
are close to all the reference reviews, but that are
not particularly close to any one of them. In con-
trast, REVIEWER2 is consistently able to generate
reviews that closely match one of the references.
This provides evidence that REVIEWER2 is respon-
sive to aspect prompts and can cover the desired

Table 6: Coverability (COV ↓) for REVIEWER2-E (R2-
E) and REVIEWER2 (R2) across six venues.

Method ICLR NeurIPS ACL ARR COLING CONLL

R2-E 13.55 12.66 16.62 15.29 14.84 15.46
R2 4.22 3.99 3.23 2.91 5.09 4.25

aspects.

5.4 Coverage Analysis
Finally, we evaluate whether authors can achieve
good coverage through the choice of aspect
prompts. Since Mr and ME

r are the only models
that permit aspect prompts, we evaluate the effect
of aspect prompts on coverage for these two mod-
els. Given papers P , reviews Y , prompts X , we
define coverability (COV ↓) for Mr as:

COV =
1

m

m∑
i=1

gi − hi

hi =
1

ni(ni − 1)

ni∑
n=1

ni∑
k=1
k ̸=n

sim(yni , y
k
i )

gi =
1

ni(ni − 1)

ni∑
n=1

ni∑
k=1
k ̸=n

sim(Mr(pi, x
n
i ),

Mr(pi, x
k
i ))

Here, hi represents the pairwise similarity among
the reference reviews for paper pi while gi is the
pairwise similarity among generated reviews based
on the PGE prompts in the dataset. The coverability
for ME

r is defined similarly but with ei as input
instead of pi. We use BertScore to calculate the
similarities. A high gi indicates that the generated
reviews are similar despite being generated from
different prompts.

Result. The results are shown in Table 6. While
perfectly reproducing the coverage of the human
reviews would imply a value of 0, Mr exhibits sig-
nificantly better coverage than ME

r , demonstrating
its effectiveness in generating tailored responses
across diverse prompts for a given paper and the
importance of using full context.

6 Conclusion

We propose a two-stage review generation frame-
work that incorporates aspect prompts. Analyses
of quality, specificity, and controllability indicate
that our method can generate high-quality and spe-
cific reviews while being controllable based on the
aspect prompt. Furthermore, we develop a new
pipeline for annotating review datasets with aspect
prompts, and we make this new dataset available.



7 Limitations

In this section, we discuss some of the limitations
for PGE and REVIEWER2.

7.1 Disjoint Processes for Generation
Our current configuration first uses PGE to gen-
erate prompts and subsequently fine-tunes RE-
VIEWER2 with the generated prompts. However,
this approach leads to a disjointed process, where
prompt generation operates independently of re-
view generation, reducing the effectiveness of the
generated prompts. Ideally, the generated prompts
should assist alignment during fine-tuning. A pos-
sible extension is to integrate the two processes
together and refine the generated prompts based on
the review generation pipeline.

7.2 Input Inconsistency
The input to PGE consists of human-written re-
views, while REVIEWER2 also incorporates pa-
pers. This distinction arises from the limitation
of Llama-2-70B-Chat, which only has a context
length of 4,096. Although GPT-4 (OpenAI, 2023)
supports up to 32,000 context length, the associ-
ated cost is high since the average context length of
the papers is 6,229. The potential improvement in
performance may not be worth the increased cost.

7.3 Limited Domain Knowledge
Currently, REVIEWER2 relies on its pre-trained
corpus, assuming that the language model used has
adequate domain knowledge. This approach might
produce inaccurate reviews for papers that demand
substantial in-domain expertise. A potential future
work could investigate the effectiveness of second-
stage pre-training or domain adaptation using the
paper corpus.

8 Ethics

Automatic review generation is a complex task and
bears a wide range of risks. It is crucial to em-
phasize that the ongoing efforts in this field are
not designed to replace human reviewers; instead,
they function as a valuable tool for authors and
a guiding resource for human reviewers. This re-
search is an exploratory work within this domain,
and it is important to stress that the outcomes pro-
duced by the models should not be misconstrued
as definitive and authentic reviews of the respec-
tive papers. In utilizing datasets, we adhere to the
intended purposes outlined in previous works. The

datasets we released offer many possibilities for ad-
vancing research in NLP, including but not limited
to review generation, instruction following, and
self-alignment.
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A Prompts for PGE

Prompt for Generation

[INST] «SYS» You are a helpful, respectful and honest assistant. Always answer as helpfully
as possible, while being safe. Your answers should not include any harmful, unethical, racist,
sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially
unbiased and positive in nature. If a question does not make any sense, or is not factually
coherent, explain why instead of answering something not correct. If you don’t know the
answer to a question, please don’t share false information. «/SYS»
Analyzing the provided review, identify a set of questions that the reviewer is attempting to
address regarding the paper without being too specific.
Here are some examples:

Review:
[SAMPLED REVIEW FROM S]
Questions to address:
[SAMPLED PROMPT FROM S]

Review:
[SAMPLED REVIEW FROM S]
Questions to address:
[SAMPLED PROMPT FROM S]

Review:
[SAMPLED REVIEW FROM S]
Questions to address:
[SAMPLED PROMPT FROM S]

Review:
[REVIEW FOR GENERATION]
Questions to address:[/INST]



Prompt for Evaluation

[INST] «SYS» You are a helpful, respectful and honest assistant. Always answer as helpfully as possible,
while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous,
or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If
a question does not make any sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question, please don’t share false information.
«/SYS»
Below is a set of questions and a candidate answer. Evaluate the quality of the questions. Are the
questions a good match to the candidate answer? Please assign a score using the following 5-point scale:
1: This score indicates that the response deviates significantly from the instruction, providing information
or addressing aspects that were not required or specified.
2: This score suggests that the response is limited in scope, focusing on a small subset of the questions
posed in the instruction. It does not comprehensively cover the entire set of questions.
3: This score indicates that the response covers a substantial portion of the questions outlined in the
instruction but falls short of addressing all of them. It suggests a moderate level of completeness.
4: This score indicates that the response covers most of the questions. However, there is some irrelevant
information in the answer that is not asked by any of the questions.
5: This score indicates that the response is comprehensive, addressing all questions in the instruction
without any irrelevant information.

Here are some examples:

Questions:
[EXAMPLE PROMPT]
Answer:
[EXAMPLE REVIEW]
Assessment:
[EXAMPLE ASSESSMENT]
Score: [EXAMPLE SCORE]

Questions:
[EXAMPLE PROMPT]
Answer:
[EXAMPLE REVIEW]
Assessment:
[EXAMPLE ASSESSMENT]
Score: [EXAMPLE SCORE]

Questions:
[EXAMPLE PROMPT]
Answer:
[EXAMPLE REVIEW]
Assessment:
[EXAMPLE ASSESSMENT]
Score: [EXAMPLE SCORE]

Questions:
[PROMPT FOR EVALUATION]
Answer:
[REVIEW FOR EVALUATION]
Assessment:[/INST]



B Example Review-Prompt Pair

Review Summary Of The Paper
This paper introduces neural matching fields into semantic correspondence. To the best my
knowledge, this approach should be the first method to do the task using implicit neural
representation. There are two problems: the computation for 4D matching field and the
inference efficiency. Authors provide effect method to address the two problems.
Strengths And Weaknesses
This paper employs implicit neural representation to do semantic correspondence. This should
be the major contribution. According to the statement of authors, I can follow the idea easily
and this idea should work. The disadvantage of this work is the experiments. There are too
many quantitative comparisons. According to the data, the performance of this method seems
OK. However, authors should provide more visual experiments to convince readers.
Questions
I only have one concern. Traditional Implicit Neural Representation method such as LIIF and
NeRF records images into the weights of neural network. One neural network represents one
image or one scene. Does NeMF take a neural network to represent a semantic correspondence
or a matching cost. If so, how much time will your method cost to train a network? If not so,
what is the difference between your method and other semantic correspondence methods.
Limitations
According to my understand, NeMF takes a network to represent a matching cost. In practice,
people need a method to compute different matching cost for different image pairs. How does
NeMF to deal with this situation.

Questions
to address

1. What is the focus and contribution of the paper on semantic correspondence?
2. What are the strengths of the proposed approach in terms of neural representation?
3. What are the weaknesses for the experiment section?
4. Do you have any concerns on the semantic correspondence representation?
5. What are the limitations regarding the NeMF approach on matching cost representation?



C In-Context Example for Evaluation

Questions 1. What is the main contribution of the paper on dictionary learning?
2. What are the strengths of the paper in the theoretical analysis?
3. Do you have any questions regarding the assumptions, theorems, and algorithm of the paper?
4. Could you access the reproducibility of the paper?

Answer The paper proposes an alternating minimization algorithm for dictionary learning, and theoreti-
cal guarantees are also given. In each step the algorithm first uses an l1, l2 and l_infty algorithm
with thresholding to get an estimate of the coefficients, and then use another gradient step to
update the dictionary.
To me two shining points of the paper:
1. Guarantee holds for the overcomplete dictionary.
2. Improved the sparsity level requirement by a factor of log d.
Obviously the NIPS format is too short for the arguments the authors are making, and a lot of
details are moved to the appendix. Due to time limit I cannot read all the details of the proof.
Below are some questions:
1. In A1 you have a mu-incoherence assumption, but mu is not shown in your theorem 3. Is it
hidden somewhere?
2. In assumption B1 you mentioned, and I agree that there is a fast random initialization so
that the condition holds. Can you give some details about your initialization procedure and
guarantees?
3. How do you handle the permutation invariance of A?
4. In your algorithm 1, line 3, the MUS algorithm has a return, but in your definition (equation
2), the return is not specified. Actually the returned should be theta instead of (theta, t, u).
5. “(w_k^t is the k^th covariate at step t)”? Why w_k^t is called the k^th covariate?
6. Any simulation result verifying your convergence rate?

Assessment The answer addresses the first question by summarizing the main contribution of the paper.
For the second question, the answer gives two strong points of the paper in its theoretical
justifications. The answer address the third question by providing six different questions
convering the assumptions, theorems, and the algorithm of the paper. However, the answer fails
to address the fourth question.

Score Since the answer fails to address all of the questions, it receives a score of 3.



D Generated Aspect Prompts and Review for this Paper

Aspect
Prompts

What is the focus and contribution of the paper on peer review generation?
What are the strengths of the proposed approach, particularly in terms of its two-stage architec-
ture?
What are the weaknesses of the paper regarding its experimental setup and proposed metrics?
Do you have any concerns or suggestions for improving the paper’s clarity and organization?

Review Summary Of the Paper. This paper proposes a two-stage review generation framework
that incorporates aspect prompts. They design a prompt generation with evaluation (PGE)
pipeline to generate a variety of high-quality aspect prompts, and they make this new dataset
available. They evaluate review quality, specificity, and aspect coverage as key properties
of the generated reviews. They provide extensive ablation experiments that identify how far
each novel contributions in their approach contributes to improved performance. Finally, they
conclude by highlighting the advantages of leveraging both the full context of the paper and the
aspect prompt.

Strengths. The paper clearly states the problem of existing methods that only generate generic
reviews and lacks specificity and control. The authors propose a two-stage architecture that
explicitly models the distribution of possible aspects that the review may address. They show
that this leads to more detailed reviews that better cover the range of aspects that human
reviewers identify in the draft.

Weaknesses. The authors evaluate the effectiveness of the proposed method with several
baselines. However, the baselines are not very convincing. The paper lacks clear motivation for
why they use a two-stage architecture. The paper needs to provide more details on how they
evaluate the generated prompts.



E Dataset Details

E.1 Paper Contents
• title: title of the paper

• authors: list of author names

• emails: list of author emails

• sections: list of sections of the paper

– heading: heading of the section
– text: text of the section

• references: list of references of the paper

– title: title of the reference
– author: list of author names of the reference
– venue: venue of the reference
– citeRegEx: citation expression
– shortCiteRegEx: short citation expression
– year: publication year of the reference

• referenceMentions: the location of the reference
in the paper

– referenceID: numerical reference id
– context: context of the reference in the pa-

per
– startOffset: start index of the context
– endOffset: end index of the context

• year: year of publication

• abstractText: abstract of the paper

E.2 Metadata Contents
• id: unique id of the paper

• conference: venue for the paper

• decision: final decision for the paper (ac-
cept/reject)

• url: link to the PDF of the paper

• review_url: link to the review of the paper

• title: title of the paper

• authors: list of the authors of the paper

F Hyperparameter Details

REVIEWER2 and SINGLES have a context length
of 32,768 while other models have a 4,096 context
length. All of the models excluding SINGLES-E0
are fine-tuned with 8 A6000 GPUs using Deep-
Speed (Rasley et al., 2020) stage 2, batch size
64, gradient accumulation 8, and warm-up steps
100 for 2 epochs. We use the AdamW opti-
mizer with a learning rate 1e − 5 searched from
[5e− 6, 1e− 5, 2e− 5, 5e− 5, 1e− 4, 2e− 4].


