Zhaolin Gao

prof_pic.jpg

I’m a third-year Computer Science Ph.D. student at Cornell University, where I am advised by Thorsten Joachims and Wen Sun, and a part-time Researcher at Meta Superintelligence. My research includes reinforcement learning, natural language processing, and recommendation systems. My work has been published at NeurIPS, ICLR, CVPR, WWW, SIGIR, CIKM, RecSys, and INFOCOM.

I completed my bachelor’s degree in Computer Engineering at University of Toronto, where I had the privilege of working with Baochun Li, Scott Sanner, and Maksims Volkovs.

I am also a part-time content creator with more than 50,000 followers and 10 million views on Bilibili, Douyin, and YouTube.

Email / CV / Google Scholar

News

Oct 1, 2025 Our paper “Prompt Curriculum Learning for Efficient LLM Post-Training” is now on arXiv.
Sep 18, 2025 A*-PO, Q#, VGS, and LLM-HMM are accepted NeurIPS 2025!
Sep 3, 2025 Q# and A*-PO are accepted (poster and oral) to New York Reinforcement Learning Workshop 2025.
Aug 6, 2025 LangPTune is accepted at CIKM 2025!
Jun 11, 2025 Our paper “Pre-trained Large Language Models Learn Hidden Markov Models In-context” is now on arXiv.
May 27, 2025 Our paper “Accelerating RL for LLM Reasoning with Optimal Advantage Regression” is now on arXiv.
May 23, 2025 Our paper “Value-Guided Search for Efficient Chain-of-Thought Reasoning” is now on arXiv.
Mar 1, 2025 Our paper “Q#: Provably Optimal Distributional RL for LLM Post-Training” is now on arXiv.

Selected Publications

  1. Prompt Curriculum Learning for Efficient LLM Post-Training
    Gao, Zhaolin, Kim, Joongwon, Sun, Wen, Joachims, Thorsten, Wang, Sid, Pang, Richard Yuanzhe, and Tan, Liang
    Preprint
  2. Pre-trained Large Language Models Learn Hidden Markov Models In-context
    Dai, Yijia,  Gao, Zhaolin, Sattar, Yahya, Dean, Sarah, and Sun, Jennifer J.
    NeurIPS 2025
  3. Accelerating RL for LLM Reasoning with Optimal Advantage Regression
    Brantley, Kianté, Chen, Mingyu,  Gao, Zhaolin, Lee, Jason D., Sun, Wen, Zhan, Wenhao, and Zhang, Xuezhou (alphabetical order)
    NeurIPS 2025
  4. Value-Guided Search for Efficient Chain-of-Thought Reasoning
    Wang, Kaiwen, Zhou, Jin Peng, Chang, Jonathan D.,  Gao, Zhaolin, Kallus, Nathan, Brantley, Kianté, and Sun, Wen
    NeurIPS 2025
  5. Q#: Provably Optimal Distributional RL for LLM Post-Training
    Zhou, Jin Peng*, Wang, Kaiwen*, Chang, Jonathan D.,  Gao, Zhaolin, Kallus, Nathan, Weinberger, Kilian Q., Brantley, Kianté, and Sun, Wen
    NeurIPS 2025
  6. Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
    Gao, Zhaolin, Zhan, Wenhao, Chang, Jonathan D., Swamy, Gokul, Brantley, Kianté, Lee, Jason D., and Sun, Wen
    ICLR 2025
  7. End-to-end Training for Recommendation with Language-based User Profiles
    Gao, Zhaolin, Zhou, Joyce, Dai, Yijia, and Joachims, Thorsten
    CIKM 2025
  8. REBEL: Reinforcement Learning via Regressing Relative Rewards
    Gao, Zhaolin, Chang, Jonathan D., Zhan, Wenhao, Oertell, Owen, Swamy, Gokul, Brantley, Kianté, Joachims, Thorsten, Bagnell, J. Andrew, Lee, Jason D., and Sun, Wen
    NeurIPS 2024
  9. Session-based Recommendation With Transformers
    Lu, Yichao,  Gao, Zhaolin*, Cheng, Zhaoyue*, Sun, Jianing*, Brown, Bradley, Yu, Guangwei, Wong, Anson, Perez, Felipe, and Volkovs, Maksims
    RecSys Challenge 2022
  10. Mitigating the Filter Bubble while Maintaining Relevance: Targeted Diversification with VAE-based Recommender Systems
    Gao, Zhaolin, Shen, Tianshu, Mai, Zheda, Bouadjenek, Mohamed Reda, Waller, Isaac, Anderson, Ashton, Bodkin, Ron, and Sanner, Scott
    SIGIR 2022
  11. MCL: Mixed-Centric Loss for Collaborative Filtering
    Gao, Zhaolin*, Cheng, Zhaoyue*, Perez, Felipe, Sun, Jianing, and Volkovs, Maksims
    WWW 2022
  12. Shoestring: Graph-Based Semi-Supervised Classification With Severely Limited Labeled Data
    Lin, Wanyu,  Gao, Zhaolin, and Li, Baochun
    CVPR 2020
  13. Guardian: Evaluating Trust in Online Social Networks with Graph Convolutional Networks
    Lin, Wanyu,  Gao, Zhaolin, and Li, Baochun
    INFOCOM 2020